昇圧型スイッチングレギュレータを我らに
- 2008/10/15 17:12
- カテゴリー:make:
電子工作をやってきて,先日とうとう手に入れた技術が,電圧を上げることです。スイッチングレギュレータを使って昇圧,というやつですね。
何だ今さらと思われるでしょうし,私自身もそういう気持ちなわけですが,手軽な方法がなかったのだから仕方がないと,居直ってみます。
78xxシリーズという俗にいう三端子レギュレータが簡単に手に入るようになるまで,電子工作のアマチュア達は電源を安定化せず,電池で動かすか,あるいは変圧-整流-平滑という三段階で商用電源から作った非安定化電源を使っていました。
もちろん,それなりの規模の安定化電源回路をディスクリートで作って搭載するマニアもいたのですが,動かしたい回路よりも安定化電源回路の方が規模がでかくなったりすると本末転倒です。
そもそも電池はなかなか都合のいい電源で,安価で持ち運びもでき,そこそこ安定化されているし,電圧も手頃です。それにノイズもリプルも含みません。
しかし,TTLのように電圧が一定でなければならないデバイスが使われるようになったり,電池では消費電流が大きいため不経済で商用電源やACアダプタを用いる場合には,やはり安定化電源回路が必要です。
そこへ登場したのが三端子レギュレータです。80年代後半には100円程度の価格になっていましたが,変圧-整流-平滑の後にくっつけるだけで安定化電源が完成,しつこいリプルもあっさり除去と,一気に安定化された電源が身近な存在になりました。
とはいえ,あくまで高い電圧から低い電圧を得るのに,その差分を熱にして捨ててしまうことで安定化するもったいない方式によるものに過ぎません。エネルギーを「変換」するという方法で安定化するスイッチングレギュレータは,アマチュアにはなかなか難易度が高いままでした。だから,高い電圧を低くすることは簡単でも,逆は夢のままだったのです。
「初歩のラジオ」などの電子工作の雑誌で見たことがある昇圧系の記事として,LM3909を使ったチャージポンプ,フォワードコンバータを応用した電子蛍光灯,電子びっくり箱,そしてTL497を使ったDC-DCコンバータくらいがあったように記憶しています。
TL497を使ったDC-DCコンバータは,確か電池1本か2本を9Vまで昇圧して006Pの代わりにするような便利グッズだったように思うのですが,大きなコイルやコンデンサが必要で,大げさになってしまったように思います。
さて先日,動作確認のために昨年秋に修理したキヤノンのX-07とNECのPC-2001の2つの機種の電源を入れてみました。X-07は「BatteryLow」の表示が出てしまいましたし,PC-2001は表示が薄く,使い物になりません。
こういう「動態保存機」を維持するのに,乾電池は不経済で,よって自己放電の少ないエネループが最適なのですが,残念なのは起電力が1.2Vと乾電池に比べて0.3Vも低いことです。
この頃の電池で動くパソコンは,電池を4本使って6V作り,これをダイオードでドロップさせて5V付近を供給していますから,ニッケル水素電池を4本使って4.8Vを作っても,実は動作電圧範囲ギリギリなわけです。先のX-07もPC-2001も,電池を取り出して測ってみると,1.2V/本とまだまだ十分な電圧です。
それでも動いているうちは良いのですが,少し電圧が下がるともう「電池切れ」というサインが出てきます。
例えばですね,単三のアルカリ電池は1500mAの電流を1時間供給できると,一般的に言われています。しかし,これは新品の電池を0.9Vまで使い切った場合に1500mA引き出せるという意味で,これが1.3Vや1.2Vくらいで使えなくなってしまうと,まだまだ残っているのに電池を交換しないといけなくなるわけです。
ニッケル水素電池の場合,終始電圧は1セルあたり1.0Vと言われています。ですが,X-07が電池切れのサインを出すのは1.15V程度です。ここで交換してしまうと,全然使い切れません。
PC-2001に至っては,4.8V位ですでに電池切れマークが点灯し,液晶表示も薄くなっています。どう考えてもアルカリ電池でしか使えまないようです。でもエネループで使いたいしなあ。
X-07は4.6VというギリギリICが動作する電圧をディスクリートで作った安定化電源回路で生成しているので真面目だなと思うのですが,PC-2001やPC-E500などでは,単三電池4本の6Vからダイオードを1つ入れて5.4Vに落とし,これをそのままCPUやRAMに突っ込んでいます。いやー,実に牧歌的な時代だったんだなあと,そんな風に思います。
そんなある日,三端子の昇圧型DC-DCコンバータICがアマチュア達の間で流行っていると耳にしました。秋葉原や日本橋で買えないようなものはすでに珍しいものではなくなっており,気が付かないうちに我々の持っているポータブル機器に内蔵されているものなのですが,アマチュアが1個2個から気軽に購入できるこの手のICは,まだまだ遠い存在です。
調べて見ると,それはHT7750AというICでした。台湾のHOLTEKというメーカーのもので,TO-92という2SC1815なんかと同じようなパッケージに入っています。見た目はそれこそ三端子レギュレータと同じで,実にアマチュア向けです。
これにチョークコイル,ショットキーダイオード,そしてコンデンサを2つほどくっつけると,1Vあたりから5Vを作ることが出来るのです。いやー,夢のようです。
しかもお値段は1つ60円程度。マルツ電波で買うと30個以上で単価50円になります。安い。アマチュア向けの定番になりそうな気がします。
簡単にHT7750Aのスペックを紹介しておきましょう。
・PFM方式(周波数200kHz)
・最低動作電圧0.7Vtyp.
・効率85%typ.
・出力電圧誤差±2.5%typ.
・出力電圧は2.7,3.0,3.3,5.0の4種類
・出力電流は最大200mA
・消費電流5uAtyp.
・スイッチングFET内蔵
・CMOS
うーん,なかなか良くできたICです。PFMというのはスイッチングレギュレータの回路方式の1つで,一般的にはPWMが使われていますが,PWMがスイッチング周波数を一定にし,デューティを可変して電圧を安定化するのに対し,PFMは周波数を可変して制御します。
PWMは負荷が軽いときでも同じ周波数で発振しているのでIC自身の消費電流が多めになりがちで,これが軽負荷時の効率を悪化させます。しかしPFMは電圧が下がったらスイッチON,上がったらOFFで制御しますので,負荷が軽いときには周波数が下がり,自分自身の消費電流も大幅に低下します。PFMが軽負荷のスイッチングレギュレータで効率を稼げるのはこれが理由です。
詳しい話は書きませんが,PFMはPWMに比べて動作が安定していて,発振しにくいことも利点です。ぱっと作ってそこそこの性能が誰でも出せる,というのは,半導体にとってはとても大事な性能の1つです。
PFMは周波数が可変するのでノイズ対策が面倒になることもあり,実際の設計ではPFMとPWMを使い分ける,もしくは両方の機能を持つICを使うのですが,今回の私の用途ではPFMでちょうどよかったと言えます。
効率85%というのは「低い」と思う人もいると思いますが,同期整流でもない昇圧型のDC-DCコンバータで85%を無調整でたたき出すというのは,私は大したものだと思います。昇圧型では頑張って作っても90%くらいが関の山ですし,素人がぱっと作って本当に85%取れるなら優秀でしょう。
消費電流が5uAというのもばっちりですね。負荷が重いときはIC自身が消費する電流など大した影響はありませんが,軽負荷時には無視できなくなります。特に,今回のようにSRAMのバックアップを行う回路では数十uAの消費電流が長く続くことになりますから,とてもありがたいです。
出力電圧は固定で,4つのうちから選びます。好きな電圧が得られないことは不自由ですが,ぱっと作って±2.5%以内の希望の電圧が出てくるというのは確実ですし,楽ちんです。少しなら電圧を調整出来ます(後述します)し,最大200mAまで取り出せるという手頃さも(放熱設計などを考えなくてよいという点も含めて)アマチュア向きにはちょうどよいと思います。
で,これを使うと,4.8Vのニッケル水素電池から,アルカリ電池の6V並の電圧を生成できるようになり,PC-2001やX-07を救うことが出来るんではないか,と思い立ちました。古いハンドヘルドマシンに近代的な電源回路を内蔵するという試みですね。
早速注文し,届くまでに仕様書を詳しく見てみます。100uHのチョークコイルと手持ちの300mAクラスのショットキーダイオード,そしてタンタルコンデンサを集めて,準備完了。
この手の電源の設計はコイルの選定がキモです。少し乱暴な言い方ですが,取り出す電流が多いときにはインダクタンスを大きくしないといけません。しかし,インダクタンスを確保するには,簡単に言うとたくさんコイルを巻かないといけませんから,そうすると直流抵抗成分が増えて,効率が悪くなります。
HT7750Aをマルツ電波で買った関係で一緒にコイルも調達しますが,ここは面実装品の背の低いコイルが買えるのがよいですね。東光のA921CYのうち,100uHのものを選びました。価格は90円。
これらが届いてから早速組み立て開始です。
HT7750Aは出力電圧が5V固定です。5Vではちょっと心許ないですから,あと少しだけ電圧を上げる工夫をしてみます。
1つは出力電圧をコンパレータの入力に戻す端子に抵抗を入れることです。こうすると内部の分圧比が変わり,高い電圧が出てきます。適当にやってみると10V位まで電圧が出てきましたが,これってHT7750Aの耐圧を越えているので即却下です。なんか電圧もふらふらとして危なっかしいので,この方法は危険と判断しました。
もう1つは,GNDを浮かせることです。ここに普通のダイオードを入れると,GNDが0.6Vほど(実際は流れる電流が小さいので0.7から0.8Vくらい)浮きます。これで簡単に5.6Vまで電圧をかさ上げ出来ました。このダイオードを流れる電流はICが消費するわずかな電流だけですので,小型のスイッチングダイオードでも構いません。
三端子レギュレータではよく使われたテクニックでしたが,これで本当に正しいのかどうか,私にはわかりません。たぶん大丈夫だと思いますが・・・
あと,ちょっと出力にノイズが多く,発振しやすくなっている可能性も心配だったので,0.1uFのパスコンをGNDと出力の間に入れてみました。目視でもノイズが減ったと分かるほどの変化があり,これは正解です。
というわけで,4.8Vから6V付近をあっさり生成出来たことに気をよくし,モジュール化して4つほど作ってみました。
では評価してみましょう。
無負荷時の消費電流は入力電圧が低いほど増えますが,3Vで30uAほど,4.5Vで15uAほどで,一応合格の範囲です。
安定した電圧(実測で5.9V)を出力できる入力電圧の最低ラインは負荷40mA時で2.2V。ちなみにGNDをダイオードで浮かせているから2.2Vなのであって,単体の特性では1.5Vくらいからになると思われます。動作そのものは1Vくらいからするようですが,電圧も上がらず,電流も引けず,実際には使えません。
効率ですが,下のような感じになりました。まずはダイオードでGNDを浮かせてあるものの結果です。
・入力:4.48V,57.6mA 出力:5.96V,35.4mA 効率:81.8%
・入力:3.02V,99.1mA 出力:5.90V,35.0mA 効率:69.0%
入力3V時の効率が予想外に悪いです。効率がGNDを浮かせたことによるのであれば,この方法で電圧のかさ上げをするのは失敗ということになります。そこで,単体の特性を評価してみます。
・入力:4.49V,41.4mA 出力:5.16V,30.7mA 効率:85.7%
・入力:3.59V,51.4mA 出力:5.16V,30.6mA 効率:85.5%
・入力:3.02V,61.6mA 出力:5.16V,30.5mA 効率:84.7%
ほぼスペック通りの結果になりました。こちらはなかなか良い感じです。
この結果から考えると,やはりダイオードによるかさ上げは効率の悪化を招くようです。入力も出力もダイオード1つ分の0.7Vだけかさ上げされていますので,HT7750Aは0.7V低い電圧で動作し,しかもより重い負荷が繋がっていると見る事ができますが,それを加味して入力の電圧が4Vくらいあれば,80%以上の効率を確保することは出来そうです。
今回のゴールはエネループ4本で6Vを得る,であり,ニッケル水素電池の終止電圧が1セルあたり1.0V,4本では4.0Vですから,これでもとりあえず実用にはなります。ギリギリセーフとしましょう・・・(プロの世界では通用しないです)
さて,もう少し電流を引っ張ってみます。
・入力4.50V,130.2mA 出力5.26V,96.1mA 効率86.7%
効率のピークは50mAくらいのはずなのですが,100mA引っ張って87%近くまで上がっています。うむー,スイッチングレギュレータは奥が深いですね。
結論ですが,データシートの回路をそのまま組み立てるだけで85%の効率は簡単に確保出来ます。電流も100mAくらいなら楽々引っ張れそうですし,リプルも少なく,ノイズも小さいので,手軽で良くできたICだと思います。
で,ダイオードによる電圧のかさ上げ作戦は,かさ上げされた分の電圧を差し引いて比較すると,4%から5%程度の効率の悪化があります。ただし動作そのものに支障はなく,4V以上で使うなら効率も80%は確保出来そうです。また,IC自身の消費電流は増えません。使い方次第では便利でしょう。
というわけで,早速PC-2001とX-07に組み込んでみました。電池からの配線をぶった切り,間にこのモジュールを挟み込むだけです。
結果は上々。PC-2001は見やすく,生き生きと動き出し,X-07も「LowBattery」の表示を出す事はなくなりました。
これだけお手軽に昇圧回路が作れるようになると,いろんなものに応用が利きそうです。コストも全部で200円か300円かそんなもんですので,値段もお手軽です。これでようやく,昇圧回路を我が手にしたという実感がわきました。
これでエネループを骨までしゃぶれる・・・そんな風に思って布団に入ったのですが,寝る前に少し考えてみると,まずいことが・・・
以下次号。

